Leyes del Álgebra de Conjuntos


  • Idempotencia
    • $$\mbox{A} \cup \mbox{A} = \mbox{A}$$
    • $$\mbox{A} \cap \mbox{A} = \mbox{A}$$
  • Absorción
    • $$\mbox{A} \cup (\mbox{A} \cap \mbox{B}) = \mbox{A}$$
    • $$\mbox{A} \cap (\mbox{A} \cup \mbox{B}) = \mbox{A}$$
    • $$\mbox{A} \cup (\mbox{A}^c \cap \mbox{B}) = \mbox{A} \cup \mbox{B}$$
    • $$\mbox{A} \cap (\mbox{A}^c \cup \mbox{B}) = \mbox{A} \cap \mbox{B}$$
  • Conmutativa
    • $$\mbox{A} \cup \mbox{B}= \mbox{B} \cup \mbox{A}$$
    • $$\mbox{A} \cap \mbox{B}= \mbox{B} \cup \mbox{A}$$
  • Asociativa
    • $$ (\mbox{A} \cup \mbox{B}) \cup \mbox{C} =\mbox{A} \cup (\mbox{B} \cup \mbox{C})$$
    • $$ (\mbox{A} \cap \mbox{B}) \cap \mbox{C} =\mbox{A} \cap (\mbox{B} \cap \mbox{C})$$
  • Distributiva
    • $$ \mbox{A} \cup (\mbox{B} \cap \mbox{C}) =(\mbox{A} \cup \mbox{B}) \cap (\mbox{A} \cup \mbox{C})$$
    • $$ \mbox{A} \cap (\mbox{B} \cup \mbox{C}) =(\mbox{A} \cap \mbox{B}) \cup (\mbox{A} \cap \mbox{C})$$
  • Morgan
    • $$(\mbox{A} \cup \mbox{B})^c = \mbox{A}^c \cap \mbox{B}^c$$
    • $$(\mbox{A} \cap \mbox{B})^c = \mbox{A}^c \cup \mbox{B}^c$$
  • Diferencia
    • $$\mbox{A} - \mbox{B} = \mbox{A} \cap \mbox{B}^c$$
  • Diferencia Simética
    • $$\mbox{A}  \Delta  \mbox{B} = (\mbox{A} - \mbox{B}) \cup (\mbox{B} - \mbox{A})$$
    • $$\mbox{A}  \Delta  \mbox{B} = (\mbox{A} \cup \mbox{B}) - (\mbox{B} \cup \mbox{A})$$
  • Complemento
    • $$ (\mbox{A}^c)^c = \mbox{A} $$
    • $$ \mbox{A} \cup \mbox{A}^c = \mbox{U}$$
    • $$ \mbox{A} \cap \mbox{A}^c = \varnothing$$
    • $$ \mbox{U}^c = \varnothing $$
    • $$ \varnothing^c = \mbox{U} $$
  • Identidad
    • $$ \mbox{A} \cup \mbox{U} = \mbox{U} $$
    • $$ \mbox{A} \cup \varnothing = \mbox{A} $$
    • $$ \mbox{A} \cap \mbox{U} = \mbox{A} $$
    • $$ \mbox{A} \cap \varnothing = \varnothing $$
Links: